Absorption of intact albumin across rat alveolar epithelial cell monolayers.

نویسندگان

  • Kwang-Jin Kim
  • Yasuhisa Matsukawa
  • Hiroshi Yamahara
  • Vijay K Kalra
  • Vincent H L Lee
  • Edward D Crandall
چکیده

Transport characteristics of intact albumin were investigated using primary cultured rat alveolar epithelial cell monolayers. The apical-to-basolateral (ab) flux of intact fluorescein isothiocyanate (FITC)-labeled albumin (F-Alb) is greater than basolateral-to-apical (ba) flux at the same upstream [F-Alb]. Net absorption of intact F-Alb occurs with half-maximal concentration of approximately 1.6 microM and maximal transport rate of approximately 0.15 fmol.cm(-2).s(-1). At 15 and 4 degrees C, both ab and ba F-Alb fluxes are not different from zero, collapsing net absorption. The presence of excess unlabeled albumin (but not other macromolecule species) in either the apical or basolateral fluid significantly reduces both ab and ba unidirectional F-Alb fluxes. Photoaffinity labeling of apical cell membranes revealed an approximately 60-kDa protein that exhibits specificity for albumin. These data indicate that net absorption of intact albumin takes place via saturable receptor-mediated transcellular endocytotic processes recognizing albumin, but not other macromolecules, that may play an important role in alveolar homeostasis in the mammalian lung.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of EGF-induced stimulation of sodium reabsorption by alveolar epithelial cells.

We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) alpha-, beta-, and gamma-subunits and Na+ pump alpha1- and beta1-subunits were detected in day 4 monolayers ...

متن کامل

Protein transport across the lung epithelial barrier.

Alveolar lining fluid normally contains proteins of important physiological, antioxidant, and mucosal defense functions [such as albumin, immunoglobulin G (IgG), secretory IgA, transferrin, and ceruloplasmin]. Because concentrations of plasma proteins in alveolar fluid can increase in injured lungs (such as with permeability edema and inflammation), understanding how alveolar epithelium handles...

متن کامل

Fluid transport across cultured rat alveolar epithelial cells: a novel in vitro system.

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid tr...

متن کامل

Net absorption of IgG via FcRn-mediated transcytosis across rat alveolar epithelial cell monolayers.

We characterized immunoglobulin G (IgG) transport across rat alveolar epithelial cell monolayers cultured on permeable supports. Unidirectional fluxes of biotin-labeled rat IgG (biot-rIgG) were measured in the apical-to-basolateral (ab) and opposite (ba) directions as functions of [rIgG] in upstream fluids at 37 and 4 degrees C. We explored specificity of IgG transport by measuring fluxes in th...

متن کامل

Hydraulic conductance of lung endothelial phenotypes and Starling safety factors against edema.

Recent permeability studies comparing endothelial cell phenotypes derived from alveolar and extra-alveolar vessels have significant implications for interpreting the mechanisms of fluid homeostasis in the intact lung. These studies indicate that confluent monolayers of rat pulmonary microvascular endothelial cells had a hydraulic conductance (L(p)) that was only 5% and a transendothelial flux r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 284 3  شماره 

صفحات  -

تاریخ انتشار 2003